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INTRODUCTION

The flow field in the aft-end region of an aerodynamic vehicle is a complex

phenomenon which has important ramifications for the vehicle performance. For

example, under many conditions aft-body drag represents a significant fraction

of the total drag occurring on a jet engine nacelle and this portion of the drag

can be radically influenced by the nacelle boattail shape. An analysis capable

of giving accurate predictions of the flow field in this region, including off-

design operation, could play an important role in the boattail design process

particularly from the point of view of optimizing the trade-off between aft-end

drag and boattail weight. The aft-end flow field problem is also very important

in transonic flow situations where improved design can lead to a delayed transonic

drag rise. In a different application the problem also becomes significant when

considering the effect of a propulsive jet plume on missile aerodynamics. In

- ---- this -case.the-maor-Intarest renters-on missile stability and control surface

effectiveness. Under some actual flight conditions the jet plume may cause

separation and/or significant flow field changes upstream of the missile base.

These in turn can result in catastrophic missile pitch up or loss of accuracy.

However, loss of control surface effectiveness need not be always detrimental;

it can be an advantage in the transonic portion of the missile boost phase.

Under transonic boost phase conditions loss of effectiveness may lead to a

decrease in missile wind sensitivity which is a desirable effect during the

boost phase. Thus, in the case of a missile, loss of control surface effective-

ness during the transonic boost phase combined with a high degree of control

surface effectiveness in supersonic flow may be the desired design goal. In

addition, the recirculating gases can of course pose a danger because of their

high temperature. Should these hot gases come in contact with an unprotected

*surface, catastrophic failure could result.

The aft-end flow problem has been the subject of numerous experimental and

theoretical investigations. Most of these were concerned with the flow field

about a back step or base with little or no bleed. However, studies more germane

to the present problem also have been performed. These include a series of

experimental efforts aimed at investigating the missile plume effect problem

some of which have been reported in the bibliography compiled by Batiuk (Ref. 1),

the isolated afterbody problem which was investigated experimentally by Shrewsbury

(Ref. 2) and the jet plume problem which was investigated experimentally by

Strike (Ref. 3) and Alpineri and Adams (Ref. 4) and Galigher, et al (Ref. 5).
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Although Refs. 1, 3 and 4 present experiments aimed directly at the jet

plume problem, it should be noted that accurate wind tunnel simulations of the

jet plume flow field are difficult to attain for two reasons. The first problem

which arises is that of jet exhaust simulation. In general, the jet exhaust is

represented either by a solid body jet simulation or by passing either hot or

cold flow through a model exhaust. At present it is an open question as to how
well these techniques simulate the actual flow at flight Reynolds numbers. In an

investigation of missile configurations Burt (Ref. 6) concluded that his plume

simulators give approximately the same afterbody pressure distributions as a real

plume. Nevertheless the jet simulation problem is a difficult one to resolve in

general. Secondly, scale effects due to the lack of simulation of both the aft-

end boundary layer and the free mixing layer may cause uncertainty in the

experimental results. This is particularly true in the transonic regime where

viscous-inviscid interacting effects play a major role in determining the flow

field, and where the interaction effects may be very sensitive to the viscous

layer thicknesses. These potential problems associated with wind tunnel testing

show that theoretical prediction procedures are a valuable compliment to existing

experimental tools.

As in the case of experiments, most theoretical analyses of the aft-end flow

field have been confined to back steps or base flows without bleed. In addition

most analyses have been primarily concerned with predicting overall flow field

quantities such as base pressure, pressure distribution during recompression,

length of the recirculation region, etc., rather than a detailed picture of the

flow field behavior. These analyses for the most part are based upon 'critical

point' methods (e.g., Refs. 7-11) or 'component analysis' methods (e.g., Refs.

12-15). Since the analyses are concerned with the overall rather than the

detailed nature of the flow field, they usually have relied heavily upon boundary

layer integral methods, mixing analyses and/or semi-empirical relationships.

Nevertheless, these base pressure analyses have been remarkably successful in

predicting certain of the overall flow field characteristics. In addition, they

are usually straightforward to implement and require relatively little computer

time. In supersonic external flow where the major concern is base pressure or

centerline recompression pressure rise for back step or base configurations

with simple geometry and little cr no bleed, these rapid techniques may be quite

adequate. However, the inherent quantities which make the procedures rapid and

easy to implement also make them unsuitable for entirely subsonic flow and for

predicting details of recirculating flow and make them questionable for cases
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in which large bleed, complex geometries, etc., are important. For example,

these methods could not be expected to predict the details of a transonic jet

plume interaction flow field particularly if the underexpanded propulsive jet

were to cause separation of the boundary layer at some location on the afterbody.

Therefore, if a detailed description of the aft-end flow is desired, an alternative

procedure must be used.

Recently, the advent of larger and faster computers and more efficient

numerical techniques have led to more detailed investigations of vehicle aft-end

flow fields. Several investigations have used the Navier-Stokes equations to

predict backstep and base flow fields (e.g., Refs. 16-21), and only recently

have the Navier-Stokes equations have not generally been applied to the full

jet-plume interaction flow field problem (Ref. 22). In addition, the subsonic

boattail problem has been investigated by Rom and Bober (Ref. 23) who used an

equivalent body to represent the wake. Fong (Ref. 24) combined the Chapman-Korst

analysis with a method of characteristics analysis to study the jet plume problem

which included the effect of plume induced boundary layer separation. Sinha,

Zakkay and Erdos (Ref. 25) developed an inviscid solution to the underexpanded

jet plume. More recently Grossman and Melnik (Ref. 26) modeled the transonic

jet plume problem by interacting three separate analyses. The jet plume is

calculated using the inviscid method of Salas (Ref. 27); the external transonic

flow is calculated using an inviscid procedure based upon the work of Murman

and Cole (Ref. 28) and Jameson (Ref. 29) and the viscous boundary layer and

mixing layer are calculated using the integral procedure of Green, Weeks and

Broman (Ref. 30). Insofar as predicting flow details and interaction effects,

the method of Ref. 26 represents a significant improvement over earlier 'component

analysis' and 'critical point' methods. (It should be noted that these latter

methods were developed primarily to predict supersonic base pressure and recompres-

sion pressure distributions in zero and small bleed cases and in these situations

the methods seem to perform quite well.) However, as Grossman and Melnik noted

in Ref. 26, their analysis does make compromises in the treatment of viscous

effects. In particular the method uses an integral boundary layer and mixing

length analysis and such integral analyses are inherently limited by their

profile assumptions. Although the method matches viscous and inviscid regions

along the displacement surface in regions of small or moderate pressure gradient,

displacement surface matching was found to be unstable in this procedure in

regions of strong pressure gradient. Therefore, the viscous and inviscid flows
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were matched along curve fits joining the displacement surfaces on either side

of a strong pressure gradient region. In addition, the method ignores normal

pressure gradients in the viscous regions and does not rigorously treat either

the possible boundary layer separation on the boattail or regions of flow reversal.

In the present report we focus directly on the region of the flow where viscous-

inviscid interaction are important. This region is sketched in Fig. 1. Consider

the interaction of an under expanded propulsive jet with a supersonic flow over a

boattail shaped body. The Reynolds number is assumed sufficiently high so that

the approach boundary layer is turbulent. As the fluid flows over the boattail

it will undergo a gradual expansion, up to some point upstream of the boattail base

juncture where the presence of the jet will first be sensed. The location of this

point depends in general upon the free stream and jet conditions as well as the

geometry of the boattail.

In the region of upstream influence on the shoulder of the boattail the flow

will compress rapidly forming a compression wave that will coalesce into a shock.

The severe adverse pressure gradient that is generated in this process will lead

to flow separation and the formation a recirculation zone. Immediately downstream

of the base, the flow will undergo a rapid expansion, and thereafter recompress

with the formation of the recompression shock.

Special consideration must be given to the computational domain which encompasses

this strong interaction region. In Fig. 2 a schematic of the computational domain

is presented. The bounding boundaries of the region of interest forms an L-shaped

domain containing a sharp reentrant corner at point h.

The present effort considers only supersonic inflow and supersonic outflow
.4 .boundaries for simplicity and since the amount of upstream influence in the (under-

expanded) propulsive jet is expected to be minor the upstream conditions for the

calculation within the nozzle are applied at the nozzle exit plane (line a-b of

Fig. 2). Consideration of subsonic inflow and subsonic exit conditions is

conceptually simple but probably would require a larger domain and could be the

subject of a later investigation. The upstream conditions for the flow over the

boattail are applied upstream of the nozzle exit plane so as to allow calculation

of possible boattail separation effects (line c-d). The outer boundary conditions

for the external flow is taken along a line parallel to the nozzle centerline

* which is far enough removed from the nozzle so as to allow application of freestream

boundary conditions (line d-e) and keep spurious shock and/or Mach reflections

from the boundary from impinging on regions of interest. Finally, the outflow
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boundary of the present region of interest is taken downstream of the recirculation

zone and weak streamwise derivative boundary conditions are applied along this

line (line e-f). The solution at the downstream boundary could be used as

inflow boundary conditions for a conventional viscous or inviscid procedure which

could be used to predict the downstream "far" flow field.

Since the computatonal domain is L-shaped, standard solution algorithms must

be modified to allow for efficient computations. Furthermore, the reentrant sharp

corner is a geometrically singularity in the flow field, and must, therefore, be

treated appropriately. A fuller discussion of these matters will be given later

in this report.

Under the present effort a local flow field analysis is considered. This

detailed solution then could be joined either to inviscid solutions or viscous

forward marching solutions, as appropriate, in an interactive manner to determine

the entire flow field. For supersonic bounding flows the matching of the detailed

Navier-Stokes solution to the external flow is quite straightforward, provided

of course that all regions of upstream influence of downstream disturbances are

contained within the Navier-Stokes solution domain. For subsonic or transonic

bounding flows the transient interacting technique of Briley and McDonald (Ref. 31)

would be used, either as a linearized correction to the external stream or as a

matching surface for a timeor relaxation step in an inviscid flow calculation.

The procedure that is used in this effort is the Multidimensional Implicit

Nonlinear Time-Dependent (MINT) procedure of Briley and McDonald (Ref. 32). This

represents an accurate, efficient numerical procedure for solving the Navier-

Stokes equations. The procedure was originally developed for laminar duct flow

and was subsequently applied to turbulent duct flow by Briley, McDonald and

~Gibeling (Ref. 33). It has since been applied to the three-dimensional combustor

flow problem by Gibeling, McDonald and Briley (Ref. 34). This procedure represents

a well-proven and well-exercised method of solving the Navier-Stokes equations.

The MINT procedure has been previously described in Refs. 32 and 33, and con-

sequently only a brief outline will be given here and the scheme presented in detail

in Appendix B. The method can be briefly outlined as follows: The governing

equations are replaced by an implicit time difference approximation, optionally

a backward difference or Crank-Nicolson scheme. Terms involving nonlinearities

at the implicit time level are linearized by Taylor expansion about the solution

at the known time level, and spatial difference approximations are introduced.

The result is a system of multidimensional coupled (but linear) difference equa-

tions for the dependent variables at the unknown or implicit time level. To

solve these difference equations, the Douglas-Gunn (Ref. 35) procedure for

8
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generating alternating direction implicit (ADI) schemes as perturbations of

fundamental implicit difference schemes is introduced. This technique leads to

systems of coupled linear difference equations having narrow block-banded matrix

* structures which can be solved efficiently by standard block-elimination methods.

The method centers around the use of a formal linearization technique

adapted for the integration of initial-value problems. The linearization

technique, which requires an implicit solution procedure, permits the solution

of coupled nonlinear equations in one space dimension (to the requisite degree

of accuracy) by a one-step noniterative scheme. Since no iteration is required

to compute the solution for a single time step, and since only moderate effort is

required for solution of the implicit difference equations, the method is computa-

tionally efficient; this efficiency is retained for multidimensional problems by

using ADI techniques. The method is also economical in terms of computer storage,

in its present form requiring only two time-levels of storage for each dependent

variable. Furthermore, the ADI technique reduces multidimensional problems to

sequences of calculations which are one-dimensional in the sense that easily-solved

narrow block-banded matrices associated with one-dimensional rows of grid points

are produced. Consequently, only these onc-dimensional problems require rapid-

acess storage at any given stage of the solution procedure, and the remaining flow

variables can be saved on auxiliary storage devices if desired. A more complete

description of the linearization technique, the alternating direction technique

and the solution procedure is presented in Appendix B.
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THEORETICAL ANALYSIS

Governing Equations

In this section the governing equations are presented in vector form for a

two-dimensional flow. The resulting Jacobian transformed governing conservation

equations in cylindrical polar coordinates are given in Appendix A. It is

convenient for turbulent flows to formally eliminate density fluctuations. This

can be accomplished by using the mass weighted or Favre average (Ref. 36). The

governing equations are then identical to the laminar equations with the flow

variables being taken as mean quantities and viscosity being taken as the sum of

the molecular viscosity v, and the turbulent viscosity v T* The resulting equations

are

Continuity

dp0p V-pZ= O

at (1)

Momentum

apu 
7r

at +V-Cpu) -Vp + V.(W+ 7T) (2)

-T

In the above equation R and 1T are the average and turbulent stress tensor

respectively.

Energy Equation

In the present formulation it is desirable to write the energy equation

in terms of the static enthalpy h because of simplifications in the turbulence

time averaging, viz.

--+ V -. ( +-) + -+- D+PT (3)

at +V phV< +DT-+()p:
4.

where 0 is the mean flow dissipation defined in Eq. (10) and e is the turbulence

kinetic energy dissipation rate (cf. Eq. (20)).
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Turbulence Kinetic Energy Equation

In the present work a turbulence kinetic energy equation and a specified

length scale equation have been utilized. Following the derivations of (Refs.

37 - 38) and Ref. (39), one obtains

P) + V-( puk) , V-( -- Vk) (4)

+ (V2D -)] -- -pkVu - p

and k is the turbulence kinetic energy

-LI 2 (5)

Stress Tensors

The stress tensor assuming a Newtonian fluid is

:ff = 2 tID - -L K .) V - U (6)

where KB is the bulk viscosity coefficient and is the deformation tensor, i.e.

D U ( JT ] (7)

The turbulent flow stress tensor is modeled using an isotropic eddy viscosity

formulation, i.e.,

T -- 2
-P U' - ( VU PkI

where k is the turbulence kinetic energy, Eq. (5). The turbulent viscosity

PT must be determined using a suitable turbulence model.

Heat Flux Vectors
t T

The mean heat flux vector q and the turbulent heat flux vector q may be

written as

,(9)

q TT (10)



T
where K is the mean thermal conductiveity, and K

T is a turbulent conductivity,

Mean Flow Dissipation

The mean flow dissipation term appearing in the energy equation, Eq. 
(3),

is defined as

-211D : ) D -K B V .U)2

In the present analysis Eqs. (1-4) are solved in conjunction with Eqs. (6-10)

= T
and the constitutive relations for U, T' K B K and K , which are given in the

subsequent section.

Constitutive Relations

The necessary constitutive relations include an equation of state, a

caloric equation of state, a turbulence length scale distribution, the molecular

viscosity and thermal conductivity,

Equation of State

The equation of state is that of a perfect gas

ppRT (12)

where R is the gas constant,

The caloric equation of state is taken as

(13)
e =C T
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where c would be dependent on the gas composition, but not temperature. We mayv
also define the static enthalpy as

h c C T (14)

where cp, the specific heat at constant pressure is not a function of temperature.

In the calculations presented in this report cp and cv were taken as constants.

Molecular Viscosity, Bulk Viscosity, and Thermal Conductivity

The molecular viscosity for the gas is determined from Sutherland's law,

T "312 T0 +S 1

"0 TTs,)T+S,

where SI  1100K for air.

The bulk viscosity will be assumed to be zero at present,

K3  0Q (16)

The thermal conductivity may be determined from a relation similar to

Sutherland's law, e.g.,

K T 3 12 To+S 2

K N \  T+S 2  
(17)

where 82 194*K for air.
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Turbulence Model Relations

The turbulent viscosity introduced in Eq. (8) is obtained from the

Prandtl-Kolmogorov relation, viz.

pk2

STk 2 (18)

and the dissipation rate is given by

_ 312

314 k (19)

where the turbulence length scale, t, must be specified consistent with the

expected turbulence structure in the flow. Following Ref. 40 the constant a

will be taken as

k =(20)

There are two options available for modeling the turbulence near a wall.

In the first, grid point resolution normal to the wall must be sufficient to define

the viscous sublayer, in which case the boundary conditions are relatively straight-

forward. However, the difficulty with this approach is that the physics of low

Reynolds number (transitional) turbulence must be modeled in a reasonable manner

by the governing turbulence equations (e.g., Jones and Launder, Ref. 40). An

alternative approach is to employ a less refined mesh and force the turbulence

variables to yield values consistent with a boundary layer wall function formulation

at the first grid point away from the wall. The difficulty with this approach is

that the validity of the wall function formulation is questionable under the flow

conditions of the viscous inviscid interaction problem. A transition model, which

was successfully used by Shamroth and Gibeling (Ref. 41) in a time dependent

airfoil flow field analysis, has been implemented in the computer code. The

analysis of Ref. 41 follows the integral turbulence energy procedure of Refs. 42 - 44

by utilizing a turbulence function a., where

c1 12 /2 (21)

and a1 is taken as a function of a turbulence Reynolds number of the form

14



[ ' RT'/ I [1'RT1 I
, a o (R ) 1.0 +S.660 o ,00 - (22)

I 0 100 j 1 100 j

where
o V .0115

f(R r ) - 100. R ° '  Rr 5 I
(23)

f(Rr ) -68 IRr + 614.3 Rr >40(

and a cubic curve was fit for values of R T between 1 and 40. As previously

discussed, Ref. 42 - 44 utilized an integral form of the turbulence kinetic

energy and, therefore, Rz was defined as an average value.

(24)

R.* T vdy- f~ YdYs

In the present effort R was defined as the local ratio of turbulent to laminar

viscosity, a1 was evaluated via Eq. 22 and C related to a1 via Eq. 21.

The effective viscosity is defined as the sum of the laminar and turbulent

viscosities

$eff Mb'T +(25)

The effective conductivity will be modeled using an effective Prandtl number

obtained from knowledge of turbulent flows of gases and gas mixtures, i.e.,

K + se CP/4 e f f  (26)eff Preff

and Pr -0.9 for air.

eff
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Turbulence Length Scale

The near wall region mixing length is obtained from the McDonald's model

(Ref. 45) with Van Driest damping (Ref. 46),

lz~,anh ~- ['exp-y/A+)] (27)

where K is the von Karman constant and A+ is the van Driest damping coefficient,

K= 0.4

=26.0

and t .098.

+

The nondimensional distance y is defined as

Y = y (28)

and the friction velocity u in the present analysis is taken as

U )2 (29)

where the local shear stress Tz is obtained from

(2: I)"2  (30)

Note that for small y the tanh function in Eq. (27) reduces to ky while for

large y it approaches I.

A more detailed description of the actual turbulence models used for the

computation and their effect on the computation will be given in the discussion

section of the paper.
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COORDINATE TRANSFORMATION

The set of governing partial differential equations which model the physical

processes was presented in the previous section. For generality these equations

were written in vector notation; however, before these equations can be incorporated

into a computer code, a coordinate system must be chosen. The governing equations

can then be cast in a form reflecting the choice of the coordinate system. The

coordinate system for a nozzle boat-tail geometry must allow for the boat-tail

body to 6#i a coordinate line, the nozzle exit plane to be a straight line and it

should have the flexibility of clustering points in regions of large shear.

Another feature of the coordinate system should be its ability to adapt the mesh

distribution as regions of large shear develop during the calculation, i.e.

be time dependent. In order to permit consistent calculation of the Jacobian in

a moving coordinate system, the governing equations should be transformed with a

Jacobian transformation of the form

Y i Y~f J(31)

T t

where (x, x2, x3) are the original coordinates (cf. Ref. 47). In cylindrical
por c

polar coordinates (xi) would correspond to (r, e, z). The velocity components
remain the components, (UI, U2, U3) in the (xl, x2, x3) coordinate directions

respectively. The new independent variables yJ are the computational coordinates

in the transformed system. The coordinate system requirements for the problem under

consideration may be represented by a subset of the general transformation, Eq. (31)

.r ~ y =x1 ,xr,,t )

y 2  y2 (x) (32)

y3 y3 (x1, x3 1t)

17

1 _______________________________



which is a general axisymmetric time-dependent transformation. For the nozzle
and boattail geometry which is axisymmetric, Eq. (32) reduces to yM2 . 2 and

all derivatives a/ay 2 are assumed to be zero.

Application of the Jacobian transformation requires expansion of the temporal

and spatial derivatives using the chain rule, i.e.,

+-- y,t (33)at dr j 6 ac

and

A~~i  y j 34 (33

Hi 1 6:I (34)

where j 8yj
Yt -

i aYj  (35)

The relations Eq. (33-35) are first substituted into the governing equations

(1-4) written in Cartesian or cylindrical polar coordinates. Then the resulting

equations are multiplied by the Jacobian determinant of the inverse transformation,

ayl 6y2  ay3

J a(x ,I 2 ,y 3 ) ay2 aX2  aX2 (36)
J=a{ yI , y2, y 3) y Y y-7 5y3

-i3  a 3̂  113
dy ay2  ay3

and the equations are cast into a "semi-strong" conservation form (Ref. 56)

using the following relations,

. . .. ..(37)
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and 3 ajyj =

L 3 T jl ayi(38)

The semi-strong conservation form implies that all factors involving the radial

coordinate r - xiremain as they were before the Jacobian transformation. The

resulting equations are presented in Appendix B.

The geometric relations Eq. (37-38) may be obtained from the transformation

relations for Jy,j and J5"j in terms of the inverse transformation derivatives

(e.g., Ref. 44),

2~I~ X 2  3, -7 K2 ,3 5 3 ,2

J9, 2 = X3 ,2  11 3- 1

Jyl =j i i -
3 112 2,3 113 2,2

23731 2,1 3,3 (9

42 = - X X
12 3,3 X1,1 3,1 1,3

Jy2  = -
,3 X1,3 X2,1 - ,1l 2,3

Ji3  =. X -X X
* 1 2,1 3,2 2,2 3,1

J93 -. X X
,2 3,1 1,2 3,2 1,1

J ~313 =I' I x2,2 - i 1,2 X2 ,1

and

3 (40)
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Grid Transformation

The flow over a nozzle boattail configuration entails regions of large

shear near the surface of the boattail and in the shear layer coming off the

trailing edge as seen in Fig. 2, curve h-g. We must, therefore, allow for mesh

clustering in both the streamwise and radial direction at the body's surface and

in the interior of the flow field. In addition, the boattail surface should

correspond to a coordinate line in order to enable one to easily impose the

appropriate surface boundary conditions.

The methods employed in the construction of the coordinate system are

based on generalizations of the Roberts type transformation, Ref. (48). Several

different analytic forms were used to cluster the grid points.

In the computational space the grid spacing is uniform and for simplicity

set to 1, i.e. Ax - 1.0. In the present problem the constraints of the grid

transformation are chosen so that the boundaries of the computational domain

fall on grid points. In addition, the boundary of the boattail surface is

chosen to lie on grid point number m, for instance. The choice of the grid

spacing between points m + 1 and m is based on physical considerations such as

the requirement that the first point above the surface should lie within the

sublayer of the turbulent boundary layer. An analogous procedure is used to

distribute the grid in the streamwise direction, but in this case the base is

fixed at a desired grid point.

This type of procedure gives the desired degree of flexibility for the

problems under consideration. Furthermore, since the grid distribution in the

streamwise and radial directions are independent, the grid will in general

be nonorthogonal. This feature, rather than being an impedement turns out to

be beneficial in that we do not overly constrain the problem to conform to say

an orthogonality condition, which would necessarily distort the boattail base

(cf. Ref. 22) when using a body fitted coordinate system. By allowing for a

nonorthogonal grid the shape of the boattail can be preserved. Obviously, the

sharp corner at the intersection of the base and shoulder introduces a singular

point into the calcultion which must be treated appropriately. In the following

section, this matter is taken up and discussed.

Treatment of the Corner Points

Corner points such as point h of Fig. 2 where the boattail shoulder intersects

the base present special problems to finite difference schemes and this flow

region has been the subject of several recent investigations. An overview of the
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problem is given by Roache Ref. (49) who points out that this region may be

subject to large truncation error. In addition, as discussed by Roache the

question of whether the potentially large truncation error is confined to the

immediate region of the corner or whether it has a much larger global effect is

still unresolved.

Several types of methods have been proposed for treating this region.

A common practice is to eliminate the corner by rounding it, and thus avoid the

problem completely. But, this method changes the geometry under consideration.

Alternatively at the corner a local analysis can be undertaken Refs. (50-51).

As discussed by Fox (Ref. 50), Fox and Sankar (Ref. 51) represent the singular

behavior of the flow by using special equations based upon a series expansion

in the immediate vicinity of a wall singularity (such as the wall corner point).

A second approach which also isolates this area has been developed by Ladeveze

and Peyret (Ref. 52) who match an asymptotic solution of the flow in the vicinity

of the corner with a finite difference solution of the Navier-Stokes equations

elsewhere. But this approach leads to a more complicated calculation, since

the embedded local analysis must be matched to the main flow field computation.

The inherent errors such as interpolating onto the "large" domain could offset the gains

of using an embedded domain analysis technique. Furthermore, the two domain

algorithm assumes that the grid is sufficiently fine in the corner region. This

may lead to undue strain on the grid spacing in the "large" domain or additional

grid points must be included, leading to increased run times.

As a compromise between these two approaches the "double valued" technique

was chosen. As discussed by Roache (Ref. 49) the method to be utilized is based

upon discontinuous values of dependent variables at the corner point. As shown

in Fig. 2, the corner point, h, can be approached from either a horizontal or

vertical direction. If the required boundary condition is a derivative condition,

the value at the corner will depend upon whether the derivative is taken in the

horizontal or vertical direction. The situation is resolved by taking h as a

double-valued point; i.e., a second grid point is located a minute distance from

the corner and dependent variables may be discontinuous between the two points

representing the corner. One of the points would be used in evaluating derivatives

in the horizontal direction and the other point would be used in evaluating

derivatives in the vertical direction.

In this technique the corner remains sharp, maintaining the original geometry,

but the singular point is allowed to exist in that the values of the pressure and
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density are permitted to vary depending on the coordinate direction from which

the corner is approached. This type of approach fits in naturally with the ADI

procedure since the double values are associated with the appropriate implicit

direction. It is important to note that only quantities whose functional values

are not known at the corner assume a double value, i.e. non function boundary

conditions are applied there. Since the no-slip condition is applied at the wall,

the velocity components are single valued and are set equal to zero. However,

the pressure and density become double valued at the corner since the boundary

condition used to evaluate these variables involve derivatives. If a gradient

condition were used for the wall enthalpy (heat transfer rate prescribed) then

the enthalpy would also be double valued at the corner. In our case, the wall

enthalpy is prescribed so that a single value of the enthalpy was employed.
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SOLUTION PROCEDURE

The computer code is based upon an axisymmetric version of the highly

efficient consistently split, linearized block-implicit solution procedure

(MINT) for the compressible Navier-Stokes equations developed by Briley and

McDonald (Refs. 53, 32, 33), and subsequently extended to multi-component,

chemically reacting, turbulent flows by Gibeling, McDonald and Briley

(Ref. 34). This procedure solves the Navier-Stokes equations written in pri-

mitive variables; in the MINT procedure, the governing equations are replaced

by either a Crank-Nicholson or a backward time difference approximation. Terms

involving nonlinearities at the implicit time level are linearized by Taylor

series expansion about the known time level, and spatial difference approxima-

tions are introduced. The result is a system of two-dimensional coupled

linear difference equations for the dependent variables at tht unknown or

implicit time level. These equations are solved by the Douglas-Gunn (Ref. 35)

procedure for generating ADI schemes as perturbations to fundamental implicit

difference schemes. This technique leads to systems of one-dimensional coupled

linear difference equations which are solved by standard block-elimination

methods, with no iteration required to compute the solution for a given time step.

An artificial dissipation term based upon either a cell Reynolds number criterion

or the rate of change of the dependent variable may be introduced selectively into

the scheme to allow calculations to be performed at high local values of the cell

Reynolds number.

The use of an implicit solution procedure requires that equation coupling

and linarization be considered. Both of these topics are reviewed in detail

by McDonald and Briley (Ref. 54) and Briley and McDonald (Ref. 32). There it is

shown that for a given spatial grid the errors arising from time linearization

of the nonlinear terms at the unknown time level should be no greater than the

discretization errors. Weinberg and McDonald in Ref. (55) also demonstrated

this result for a model problem. Furthermore, reduction of the time step is the

preferred way of reducing the linearization error since transient Accuracy is

thereby improved. Linearization by Taylor series expansion in rime about the

known time level introduces errors no greater than those due to the differencing

(Refs. 41 and 18), and this approach has been employed here. The formal

linearization process results in a system of coupled equations in order to

retain the requisite order of temporal accuracy. The system of coupled

equations at the implicit time level is solved efficiently using a standard

block elimination matrix inversion scheme. In the present problem, the strong

4coupling effects among the governing equations dictate the use of the block
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coupled equation approach. However, weakly coupled equations could be solved in

a decoupled manner in order to reduce computer time and storage requirements. A

description of the linearization technique and the ADI procedure is given in

Appendix B.

Initial and Boundary Conditions

The solution procedure requires that initial and boundary conditions be

specified. Although the time asymptotic solution of the Navier-Stokes equations is

independent of initial conditions, a prudent choice of initial conditions could

hasten convergence. The initial conditions that were chosen for the problems of

interest essentially involved the translation of the profiles of the dependent

variables at the upstream boundary throughout the computational domain with the

constraint that the profiles satisfy the boundary conditions at the surface of

the body.

The choice of boundary conditions is not as arbitrary, and depends on the

physics of the problem. Since the external flow is supersonic at the inflow

boundary, profiles of the dependent variables are specified in accordance with an

inviscid characteristic analysis. At the surface of the body no-slip and constant

wall enthalpy boundary conditions are used. The latter condition was used due to

its simplicity, and could have easily been replaced by a derivative condition

(heat transfer rate) on option. An additional condition is needed for the remaining

variable, the density. Both the normal momentum equation evaluated at the solid

boundary and the normal derivative of pressure have been used successfully. Along

the axis of the boattail, symmetry boundary conditions are employed while at the

downstream outflow boundary second derivative extrapolation conditions are applied.

These extraneous conditions are used in lieu of special differencing to eliminate

the exterior points. In view of the reasonable nature of the physical approximations

involved this is found to be both convenient and realistic, and we had no dif-

ficulty in applying them. However, at the top boundary, where waves generated in

the interaction process in the vicinity of the boattail must exit the computational

domain special attention must be given to the appropriate choice of boundary

conditions. In order to prevent these waves from reflecting from the top boundary

back into the computational domain and perhaps polluting the solution, a Mach

wave extrapolation condition was developed. A description of this boundary

condition is given in some detail in the next section.
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Mach Wave Extrapolation

1 2 3
Consider a nonorthogonal coordinate system (yl, y , y3) and a Cartesian

1 2 3 1 2 3
system (x x x3 ) with Cartesian velocity components (uI u u

/S

/ -U

e x. 3 7 y3

Sketch 1

Through point 0 we may draw the streamline and Mach wave inclined at an

angle p with respect to the streamline. The streamline is at an angle 9
3

measured with respect to the Cartesian coordinate x 3

Now

PC, =sinfl P C (41a)

and

tan (41b)

which leads to a total included angle with respect to x3 of

8 60+ Po (42)

The mach wave passing through point 0 can be represented as the vector s

^ A (43)
s -sin 4, + COS4, 13
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1 3where and 3 are unit vectors in the x and x directions respectively.

For any scalar function (P the gradient is given by

V + I 33 (44)

-4.

The component of V$ in the s direction is obtained by the dot product

- V. (D = si n 4 ,( , + Cos 4 4, 3  (45)

so that the mach wave extrapolation condition, i.e. t along a mach wave is

constant, becomes

sin *(D,1 + cosik(,3 = 0 (46)

Relating the Cartesian coordinates (x 
I) to the physical coordinates (y )

we obtain

ay Ixi y 6X, (47)

a! a Y, _ () ay3
'3 8x3  oy3  ax 3

Substituting Eq. (47) into equation (46) we obtain

a(D+ C ( = 0 (48)

ay' oaY-z

where

6Y-3 + cot 43by3

____ 6_3 N (49)

_6;yl ayl D

a +cot
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1 3

Now a is a nonlinear function of the velocity components u , u and h the enthalphy

via the evaluation of the angle *. We must, therefore, linearize this term about

the known time level n.

af + -- + I +ho

where

-- = (csc2) n  yay 3  o., _ (Yl a _ f(n.n )

dul D [o - 8TX- J au' aT
and similarly

u 3  au

60 _ n (-)6
ah a

Hence

0'" n o - " ne n AU.,o, ,I + ( a , *,.,,,3 +( NL.)o A],
Au1  -+( T ah (51)

The Mach wave extrapolation boundary condition is employed on the first sweep of

the ADI procedure (in the x direction), at the * level. This condition reduces

to the following equation

ay'. + o- a CI) =o

or

0-n~ (52)
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using the linearized form of an + l we obtain

y l " f - ull u3  / h /(53)

. n ++ )j

1 3
where 0 is either u , u or h.

One could lag the Mach angle (evaluate it at the n time level) by setting
On - 0. For our case this simplification was used since we were interested

only in a steady solution, and the flow near the outer boundary was well

behaved.
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DISCUSSION OF RESULTS

Several different aft end flow fields are discussed. In order to verify

the code, i.e. L-shaped domain and corner point treatment as well as the

adaptive grid capability the laminar supersonic two-dimensional right angle

backstep was considered. Turbulence modeling effects were investigated in the

supersonic axisymmetric test case of Badranarayan (Ref. 57). In both these cases

the expected qualitative behavior was obtained. However, the results will not be

discussed in any great detail except where relevant to the studies they were

specifically designed to address. The cases that are considered in detail are

the flow over the AGARD 100 nozzle boattail at M. = 1.5 with and without jet

exhaust. These cases correspond to the experiments of Galigher, et al (Ref. 5).

In addition, the two-dimensional supersonic flow over a rearward facing step and

the subsequent reattachment of the free shear layer on a 200 inclined ramp will

also be described. This case, which corresponds to the data of Settles, et al

(Ref. 58) was submitted by SRA to the 1981 AFOSR -HTTh- Stanford Conference on

Complex Turbulent Flows.

Mesh Movement - Adaptive Grid

In the solution of problems where regions of large gradients occur, lack of

mesh resolution can lead to oscillations, cell Reynolds problems or give misleading

results. Whenever these regions can be isolated and identified then standard mesh

refinement techniques such as those discussed in this report can be implemented.

However, in many cases these regions either cannot be identified a priori or they

change in time as the solution procedure progresses. There is, therefore, great

interest in being able to adapt the grid to the particular problem. Two aspects

of the grid adaptor procedure must be considered. The first is the actual process

of moving the grid and the second, the far more difficult, is the choice of

criteria by which the grid moves. The latter point becomes even more difficult

if we wish to automatically adapt the grid by monitoring particular functions or

derivatives, since we do not wish to mislead the geometry into clustering grid

points in inappropriate regions or by moving it too rapidly.

The first problem of actual grid movement is accomplished by using the time-

dependent geometry form of Navier-Stokes equations that has been applied by Gibeling

and McDonald Ref. (59 ) to interior ballistics. The metric data is cast into a

form that it is a function of time. Hence, the governing equations contain terms

that account for geometry movement (they appear as convection terms). This
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procedure eliminates any need to interpolate data from one grid onto another

across a time step. An alternate approach would entail interpolating onto a new

grid at the end of a time step, and then marching the solution from there. The

main advantage of this procedure is that it simplifies the evaluation of geometric

germs since it is now independent of time. However, it has the disadvantage,

as previously mentioned, of requiring the interpolation of the entire flow field

onto the new grid whenever the grid is moved. Since the time dependent geometry

option allows for geometries that can change in time, i.e. expanding domains, the

additional generality influenced the choice of method. However, the alternate

approach could be useful for certain applications and deserves further consideration.

The second problem of choosing the criteria by which the mesh is modified

in time is now considered. Our aim is to redistribute the number of grid points

so that they are concentrated in the region of the free shear layer. In order

to locate the shear layer, the region of large gradients, an optimization routine

developed by Levy (Ref. 60) was adapted for the MINT code. We assume that the

shear layer begins at the corner point (cf. Fig. 3) and can be represented by an

analytic function. In this case, it was chosen to be a cosine function, i.e.

x 0 + A (I - COSX(Zo-Z)) X(Z-Zo) 05 (54)

x Xo+ 2A X(Z-Z 0 )>t

where x and z are the coordinates of the corner and the two underdetermined0 0

coefficients A and X, the amplitude and wave length respectively are functions of

time. The cosine function was chosen due to its simplicity, but any other

convenient function could have been used. In the vicinity of the shear layer the

flow field is sampled for the magnitude of the first derivative of the dependent

variables. The data is then filtered and an "optimum" curve is derived (e.g. A and

X are chosen) that best fits the data and has the functional form given by

equation (54).

Assume for the moment that the original mesh was orthogonal and that a Robert's

type transformation was employed that was centered about the line x - x0 , where x°

is the location of the corner (cf. Fig. 3). The shear layer will in general depart

from the original horizontal line x - x . Since we wish to cluster points in the

vicinity of the shear line, we center the grid transformation about this new computed

curve. Note that the resulting grid will no longer be orthogonal in the region of
th

the shear layer. Both levels of geometry, the original orthogonal grid at the n t

time level and the new nonorthogonal grid at the (n + l)st time level are employed to

advance the solution one step in time. At this point, the data can be sampled again
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to determine a new location of the shear layer. The process is repeated at some pre-

determined frequency (in time) or until the shear layer position does not change

within some preset tolerance.

This adaptive grid option was examined for the laminar two-dimensional flow

over a back step at a Mach number of M = 3 and Reynolds number based on step

height of Reh = 400. A velocity vector plot of the flow field is shown in Fig. 4.

Two tests were conducted. In the first, the grid was forced to move through

half a cycle which corresponds to the maximum deviation from the initial state of

a horizontal line. The purpose of this test was to verify that the solution is

well behaved during the mesh movement, and to determine how sensitive the solution

was to the mesh clustering about the shear layer. Figure 5 shows the velocity

profiles at two locations downstream of the base, in the recirculation zone and

in the wake before and after the mesh movement. The results compare very well

with each other indicating that the method does not introduce errors due to grid

movement and that in the case of interest the solution is not very sensitive to

the location of the shear layer. It is expected, however, that for other cases in

particular for turbulent flows greater mesh sensitivity would be encountered.

The second test case was designed to allow the grid to move under the control of the

optimization curve fit procedure described previously. In Fig. 6 the velocity pro-

files in the wake and recirculation zone are compared again prior to and after mesh

movement. The results compare well with one another. In the case considered, the

original orthogonal grid had adequate resolution in the shear layer and, therefore,

the use of an adaptive grid did not have a substantial effect on the results. In

other problems being considered at SRA this is not the case. For instance in the

normal shock calculations (ARO Contract DAAG29-80-C-082) the adaptive grid procedure

aided in stabilizing the moving shock and resolving the details of its structure.

Although for the cases considered in this report (e.g. boattail geometry) the

adaptive grid option would have been useful, we did not proceed with its implementa-

tion at the present time. A primary reason was that the hyperbolic function grid

transformations that were employed initially in order to cluster points within the

shear layer did not have the desired grid control under mesh movement. This is

in part a consequence of the physics of the problem which leads to a "shear layer

primarily a function of z alone. For the normal shock case adequate grid control

was obtained. Recently, new grid transformations have been developed that alleviate

this problem and allows for better grid control. They have not as yet been used in

adaptive grid calculations.
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Nozzle Boattail

Experimental data is very limited for the cases of interest; the

supersonic axisymmetric turbulent flow over a boattail geometry with and

without jet exhaust. Either the geometry is inappropriate, i.e. 2-D versus

axisymmetric, or the flow is subsonic or insufficient data is given. The case

chosen with which to compare our calculation was that of Galigher, et al (Ref. 5).

This case has two main shortcomings, the data is incomplete, there are only

pressure measurements for the shoulder and no measurments at all in the interaction

zone downstream of the base, and there are three dimensionality effects due to the

model supports. Although, at the outset of our calculation these shortcomings

were evident, it was felt that the data for the pressure signature on the shoulder

should be reliable, and of sufficient interest to warrant their consideration.

Furthermore, the jet on case was computed by Mikhall, et al (Ref. 22), and this

seemed to afford us a means of comparing our calculations with other results.

Unfortunately, the lack of data was a far greater detriment than expected.

Since our results indicate that the pressure signature on the shoulder is

sensitive to the turbulence model, additional data on the shoulder, i.e. velocity

profiles as well as in the jet and wake could have been useful in selecting the

appropriate length scales. Although the calculations showed less sensitivity to

upstream turbulent boundary layer parameters, additional data by the experimentalists

could have been of value. Originally, we had intended to compare our calculations

with those of Mikhail, et al (Ref. 22). However, due to significant differences in

the geometry adopted and substantial differences in turbulence modeling as compared

to that adopted here, it was decided that a comparison with the calculation of Mikha
could be misleading and this is deferred until some of the questions that are raised

later in this report can be resolved.

In this section we describe the construction of the coordinate system for

the boattail geometry, the boundary conditions and turbulence model employed and

the results of our calculations for the jet on and jet off cases.

Figure 7 shows the AGARD 100 nozzle boattail configuration with the

coordinate information given in tabular form. In order to simplify subsequent

computations, the geometric data was represented by a least square cubic curve

fit given as

r 4.93-.022948X- .00302X - .000374Th3  (55)
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The maximum error between the analytic representation and the actual boattail

shape was less than 1.5%.

The computational domain is shown in Fig. 8, and includes moving counter-

clockwise the upstream boundary, boattail shoulder, boattail base and jet exit,

symmetry line, downstream boundary and the outer boundary. Note that the region

external to the boattail body is L-shaped. The upstream boundary was chosen at

5 baseheights upstream of the base, the downstream boundary at 8 base heights

downstream of the base and the outer boundary at 4 base heights above the symmetry

line.

The first task was to construct a coordinate system with a sufficient

distribution of grid points to adequately resolve the flow field within the

computational domain, while satisfying the constraints that all boundaries must

lie on coordinate lines and the base shoulder interaction remain sharp. As

discussed in an earlier section, this leads to a nonorthogonal grid distribution.

In the following, the grid construction is outlined.

Consider the rectangle enclosing the boattail. It includes as sides

the upstream and downstream boundaries and the outer boundary and symmetry

lines. The z = constant lines (vertical lines) are constructed first.

Since these lines do not vary with x a single distribution is required which

assures that the upstream and downstream boundaries lie on grid points and that

the base, which is in the interior also lies on a grid point. We employ an

analytical transformation which satisfies the above conditions and allows for

grid spacing control to the requisite degree of resolution in the vicinity of

the base. Refer to Fig. 9 for the z distribution. In the case we considered,

there were 41 grid points in the z direction with the base falling on the 20th

grid point.

Having obtained the z distribution we are in a position to construct the

x distribution. The constraints for this portion of the grid generation process

are that the outer and symmetry boundaries lie on grid points. In addition,

the boat-tail surface must also be a coordinate line. Since the boattail

surface terminates at the base, we must analytically extend it in order that the metric

data be continuous at the corner point. This was accomplished by passing a second

order polynomial through the corner point, which matched the slope of the boattail

at the corner and terminated at some location downstream of the base with a zero

slope. For each z location, the upper boundary, the boattail surface and its

extension and the symmetry line were required to lie on grid lines with the

additional constraint that the grid spacing near the boattail surface be chosen

to adequately resolve the turbulent sublayer. The analytic transformation used in
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obtaining the z distribution was also used here and obtained the grid lines shown

in Fig. 9. Note that in contrast to the z distribution which was not a function of x

and was obtained in one pass, the x distribution was repeated at every z station.

This is a direct consequence of the nonorthogonality of the grid, i.e. the x

coordinate lines are functions of z. In the case under consideration 41 grid

points were used in the x direction with the boattail surface lying on the

20th grid point. Since the points within the nozzle boattail do not lie within

the computational domain, a total of 1320 grid points including boundaries were

used for the computation. This is a rather meager number of grid points, and large

stretches had to be used in order to satisfy the constraints that were placed on the

transformation. More grid points could have eased the severity of the stretches

while allowing better resolution. Whether there was adequate resolution in the

interaction zone is still open to question. The jet on results indicate that

immediately upstream of the base there was insufficient resolution. This question

will be addressed in greater detail below.

In order to solve the Navier-Stokes equtions, appropriate boundary

conditions must be specified. These are given below.

1. Upstream inflow boundary

Profiles specified for u, w, h, p

2. Boattail surface and base

u =w 0

T = Tw

ap 0
an

3. Symmetry line

u 0

3w _ah L 0
an an an

4. Downstream outflow boundary

a2 u a 2 w _2 h . 2p

az2  az2  az2  3z2

5. Top outflow boundary

Mach wave extrapolation for u, w, h, p

6. Jet at base

u- 0

w, h, p or P profiles specified
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The freestream conditions for the boattail jet off condition are

M = 1.5 and Re =2.5 * 106/ft.

The wall temperature was taken as T = 580*R. In order to obtain upstreamw

turbulent profiles, the boundary layer thickness is needed. A value of 6 = 1.12

inches was chosen which corresponds to the estimate of Mikhail, et al (Ref. 22).

Insufficient information is given in the experiment to obtain a precise value.

A better approximation for the upstream profiles and 6 could be obtained by

exercising a marching procedure, e.g. the PEPSI-S Code (Ref. 61) and marching from

the nose of the one cylinder until the upstream boundary of the Navier-Stokes

computational domain. Numerical experiments indicated that decreasing 6 did not

have an appreciable effect on the pressure signature on the shoulder.

Employing the procedure of Maise and McDonald (Ref. 62) the appropriate

constants for the Coles law profile can be obtained, and streamwise velocity

profile computed. Assuming H = constant, u = 0, and that the pressure is0

constant across the boundary layer and equal to the free stream value, the density

and enthalpy profiles can be obtained. Since these profiles are not precisely

consistent with the interior solutions, a procedure was implemented in order to

eliminate their effect on the Navier-Stokes solution. A preliminary calculation

was performed, beginning upstream of the Navier-Stokes region, at z/h = -8 and term-

inating at z/h =-3. This computational domain starts in uniform flow and has no

knowledge of the base and hence will not be influenced by upstream effects. The

Navier-Stokes equations are solved within this domain, and the profiles that are

obtained at z/h = -5 then become the upstream boundary conditions for the base

region domain. The pressure coefficient obtained for this calculation is presented

in Fig. 10. Also, on this figure are the c curves for the jet on condition. NoteP
the three dimensionality of the experiment in the variation of the c curves for

the upper and lower surfaces. The computed c curve which lies between the twoP

experimental data curves is in fairly good agreement with the data.

A turbulence model must now be specified in order to obtain closure. An

algebraic mixing length model, the one-equation k-L model and the two-equation k-c

model were experimented with for a number of test cases. In our calculations of the

supersonic axisymmetric backstep problem of Badranarynan (Ref. 57), a comparison of

the mixing length and k-i models was made. Both models are dependent on evaluating

an appropriate length scale. On the surface of the body, this is relatively easy.

However, in the wake it is much more difficult since we must detect the "edge" of

the shear layer which is not well defined. However, the results obtained by both

methods in the wake of the body were very close to one another.
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During the calculation of the Stanford test case (see following section)

the two-equation k-c model was exercized. Difficulties were encountered immediately

downstream of the corner in the recirculation zone. At least some of these dif-

ficulties were traced to the low Reynolds number correction terms that were devised

to be used near solid boundaries, which apparently give rise to non-physical be-

havior in the free shear layer. In view of the lack of confidence in the k-E model

with no-slip boundary conditions and the absence of any substantial improvements in

using the computationally more expensive k-i model, the algebraic mixing length

model was used to obtain the reported results.

Figures 11 - 16 show computer plots of the results of the calculation.

In Fig. 11 the Mach number contours for the entire computational domain are

presented. The interaction of the expansion wave on the shoulder with the

separation compression wave is evident. Furthermore, the closing of the Mach

number contours incidate the presence and extent of the recirculation zone.

A blown up view of the coordinate system in the vicinity of the base is presented

in Fig. 12. Several streamwise coordinate lines near the shoulder of the

shoulder of the boattail have been eliminated for clarity. The pressure contours

in this region are shown in Fig. 13. Note that the pressure minimum is in the

center of the recirculation vortex and that the flow recompresses downstream

of this location in the near wake. Further downstream (not shown in this figure)

in the far wake, the flow reexpands. The next two figures 14 and 15 show the

velocity vector plot for the full domain and the near wake region respectively.

The turning of the shear layer and the resulting closed recirculation zone is

clearly seen. These results are in keeping with the expected qualitative

behavior.

As mentioned earlier, the sole data presented in Ref. 5 is for the pressure

coefficient, cp, on the shoulder of the boattail. In Fig. 16 we present a

comparison of our calculations with the data of Ref. 5. From 1.5 to 8 base

heights upstream of the base, the data for the upper and lower surfaces are

shown with the spread in c values being indicative of the three dimensionality

of the flow. For the section of the boattail in the vicinity of the corner only

the top surface data is shown since we did not have available the bottom surface

data. In the region from 3 to 5 base heights upstream the computed cp curve

is indistinguishable from the curve presented in Fig. 10 which was used to obtain

the upstream boundary conditions and confirms that the location of the upstream

boundary placement is not influenced by the interaction process.
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As compared to the experimental data, the computations show a pressure rise

that is delayed and thus leads to a smaller region of upstream influence. Although

the pressure rise has the same slope as the data, there is no plateau or leveling

out of the pressure as the corner is approached.

Several factors could have contributed to the quantitative lack of agreement. Firs

is the turbulence modeling in the wake and on the shoulder. The turbulence model

employed was an algebraic mixing length model. The mixing length on the shoulder

was computed by Eq. (27). In the free shear layer and wake the mixing length was

nominally computed from a linear expression relating k. at the corner and k

at some location downstream in the wake. The value of 2 at the corner was the

value obtained at the point of minimum pressure on the boattail shoulder and

which was frozen at that value over the remainder of the boattail surface.

In order to assess the effect of the length scale in the wake region on the

boattail corner pressure, the value of Z.OD was varied. This is shown in

Fig. 17. As Z* is diminished, the effective Z. in the recirculation is

increased resulting in a greater turbulent viscosity and, hence, a lower

corner pressure. The c results presented in Fig. 16 are for case 4.

The effect of the 2 distribution on the boattail surface was not

evaluated in such detail, but it would appear from our computations that it

has a less significant effect than the k. distribution in the wake. However,

the inherent assumptions of the mixing length, i.e. the turbulent viscosity is

proportioned to the velocity gradients may be suspect in the separated

region on the boattail. Further detailed investigation of the one and two-equation

turbulence models would be of value in resolving this issue.

It must also be pointed out that the jet off computation did not correspond

precisely with the actual experiment. Apparently, the jet off experiment was

run with the nozzle open. This would allow fluid to enter the nozzle and thus

give rise to a recirculation zone that was different than one that would exist if

nozzle plane was a solid surface. The flow structure in the vicinity of the base

would necessarily have an effect on the pressure at the corner.

To calculate the flow field with the nozzle open would require that the

computational domain include a region inside the nozzle upstream of the exit plane.

Although the computer code is designed to handle such geometries at this stage of

the model development it was felt that the added complexity was not warranted.

Thus, in the present computations a solid wall on the nozzle exit plane was assumed.

In comparing the computations with data, it would appear that assuming a solid

wall could have a significant effect on the boattail pressure signature. It is

recommended that in any study aimed at resolving the discrepencies in the c
p
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distribution additional effort should include expanding the computational domain

into the interior of the nozzle.

Jet On Case

The next case we considered was a nozzle boattail with jet exhaust at a

nozzle pressure ratio (NPR) of P jet/Po - 7.09. P et is the jet static pressure

and P is the free stream stagnation pressure. The other pertinent data are:

T = 450OR M = 1.08
jet jet

Nozzle exit radius R = 1.991 inches

Since the jet is supersonic, function data in the form of profiles of the

dependent variables can be applied as boundary conditions. Note that the jet

does not span the entire base area and this results in split boundary conditions

on the base that changes abruptly at the jet/wall juncture. No computational

problems were observed as a result of applying such boundary conditions.

The jet issuing from the nozzle is assumed to have a streamwise velocity

distribution given by

W(r) = W. 05 r 5R_
J (56)

W(r) =W r / * r <R

where W. is the jet centerline velocity, 6 = .lR and R = .9R, while the normal
velocity is set to zero. In addition the stagnation temperature of the jet is

assumed constant as is the static pressure. This model was used to obtain the

appropriate density and static enthalpy profiles. The same grid distribution was

used for both the jet off and jet on cases. At the base, the jet exit area

encompassed grid points 1 - 11 while the solid wall was located on grid points 12 - 20.

The results of the calculations are shown in Figs. 18 - 22. In Fig. 18

the Mach number contours are presented for entire computational domain. The

pattern is very different from the jet off case. With the jet on there is very

little turning and in the near wake there is a rapid expansion. This is more

clearly evident in Fig. 19 where the pressure contours are shown in the vicinity

of the base. In Figs. 20 and 21 the velocity vector plots for the entire

computational domain and for the near wake region are presented. The recirculation
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zone on the shoulder, upstream of the corner, can be seen indicating the relatively

large region of upstream influence. These results are in keeping with the expected

physical behavior of the jet interaction.

The computed c distribution on the shoulder is shown in Fig. 22 where it is

compared to the data in Ref. 5. The pressure rise in the vicinity of the base is

somewhat delayed when compared to the data, and overshoots the experimental peak c .P
Also, near the corner oscillations in c are noted. The oscillations are believed

grid dependent and could be eliminated by resolving the region near the corner with

a finer grid. The reason for the overshoot and delay in the pressure rise is still

unresolved, but as in the jet off case, it is believed that turbulence modeling plays

a significant role.

Rearward Facing Step

The solution procedure described in the previous section is also used to

compute the two-dimensional supersonic turbulent flow over a rearward facing step

with shear layer reattachment on an inclined ramp. The numerical results that are

compared with the data of Settles, et al (Ref. 57) were submitted by SRA, Inc.

to the "1981 AFOSR -HTTM- Stanford Conference on Complex Turbulent Flows".

The interesting feature of this problem is that the process of reattachment can be

studied without complicating the upstream, incoming flow, with shock and expansion

wave effects. These effects are present when we consider a simple back step flow.

In that case the expansion wave eminating from the vicinity of the corner and the

recompression shock influence the shear layer development and complicate the

initial conditions of reattachment. By carefully adjusting the experiment

Settles, et al (Ref. 58) were able to isolate the reattachment process by allowing

the free shear layer to leave the back step parallel to the wall with no wave

disturbance.

The experimental model and a schematic of the flow field is shown in Fig. 23

with the appropriate dimensions. The flow field contains two corners, the back step

and the cavity ramp juncture. The former was kept sharp since the geometry at that

location has a strong influence on the flow structure while the ramp cavity juncture

was rounded with a small circular fillet. The rounding of the cavity ramp juncture

is not expected to be an appreciable effect on the structure of the redeveloping
flow. The construction of the geometry deserves special attention. Since the

incoming flow is parallel to the upper surface of the back step, it is desirable
3

*to construct the x coordinate lines parallel to this surface. Similarly, since



the outgoing flow will eventually align itself with the ramp, it is also desirable
3

to construct the x coordinate lines parallel to the ramp near the exit of the

computational domain. Within the computational domain the x coordinate lines

must then vary smoothly between these two extremes, the x coordinate lines
3

by the same token should be orthogonal to the x coordinate lines at the entrance

and exit of the computational domain. However, within the computational domain

the coordinates become nonorthogonal (cf. Figs. 24 and 25). The actual construction

of the coordinate system is briefly described below.

Consider the computational domain (cf. Fig. 24) which is set off by the bold

lines. Moving counterclockwise we start at the upstream boundary, and proceed

over the back step surface, the base and the cavity floor. This is followed by

a 200 inclined ramp, the exit plane that is perpendicular to the ramp and finally

the outer boundary which begins parallel to the ramp and ends up parallel to the

back step surface. Note that the cavity ramp juncture as well as the outer

boundary are rounded with circular fillets so that the metric data in these

locations would remain smooth. In order to construct the desired coordinate

system, we focus on the trapezoid ABCD that encompasses the computational domain.

First consider the coordinate lines which intersect the upper and lower

boundaries. The constraints which are imposed are that the inlet AED, the exit

BGC and the line containing the base all lie on coordinate lines. Furthermore, with

the conditions that the grid spacing is prescribed these lines and that the

line adjacent to the exit is orthogonal to the ramp we can construct the required

grid distribution by employing a hyperbolic function transformation. This is

accomplished by distributing points both along the top and bottom sides of the

trapezoid (lines AB and CD) and connecting the corresponding points by straight

lines (cf. figures 24 and 25).

In order to obtain the other family of coordinates we use the same approach

as for the boattail and construct the curve EFG which has zero slope at the corner

F and is parallel to the ramp at point G. Employing the procedure used in the

construction of the streamwise cooridnate lines for the boattail geometry, the

coordinate system shown in Fig. 25 is obtained.

The flow conditions for the problem are

M - 2.92

Re - 6.7 x 10 /meter

Tw - 265*k
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The governing equations, continuity, two Cartesian momentum, energy and

state are solved coupled, with the following boundary conditions:

1. Upstream inflow boundary

Profiles specified for u, w, h, p

2. Backstep surface, base, cavity and ramp

U=W=0

T = Tw

= 0an

3. Downstream outflow boundary

2 2 2 22u  a2w a h =Dp
az2 az2 az2 az2

4. Top outflow boundary

Mach wave extrapolation for u, w, h, p

The turbulence model used here was also an algebraic mixing length model with

Z. linearly increased in the wake until it reached a value of . = .09 Sa the

average 6 on the ramp which corresponds to o - .039.

It has been found necessary to add an artificial dissipation term in the

numerical algorithm in order to suppress wiggles that could appear in regions of

large cell Reynolds number. However, adding too much dissipation could smear

out shock waves. In Ref. (63) it is shown that by appropriately dialing down the

dissipation we can sharpen the shock waves. Such a method has been employed for

the results presented here.

In Fig. (26) the pressure contours are shown. The pressure disturbance

produced at the corner is inclined at the local Mach angle, while the compression

wave that is generated in the reattachment process coalesces into a shock. The

velocity vector plot presented in Fig. (27) confirms that the shear layer is

parallel to the cavity wall. Furthermore, the recirculation zone contains three

vortices. This is physically plausible since the ramp elongates the recirculation

and causes a small vortex to be snipped off, and kinematic considerations require

there to be an odd number of vortices.

Of major interest is a comparison of the velocity profiles in the shear

layer and on the ramp. These results are shown in Figs. 28 and 29. There is

fairly good agreement between the computations and the experiment. In particular

the presence of the recompression shock on the ramp is evident in profile F.
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The discrepancies that are noted are due in part to the mixing length turbulence

model that was employed. Grid refinement on the ramp and moving the exit plane

further downstream could also aid in obtaining better agreement.
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CONCLUSIONS

In this report the development of a Navier-Stokes solution procedure

- that could be used to compute the aft end flow field over missile type bodies

is presented. Special attention was given to handling the L-shaped domain that

is encountered, the treatment of the sharp reentrant corner and the application

of the appropriate boundary conditions.

An adaptive grid option was exercised for a model back step problem

where the free shear layer was tracked and the grid distribution was

automatically adjusted about this mean free shear layer curve. Calculations

were performed for the supersonic turbulent flow over a 10° nozzle boattail

configuration with and without jet exhaust. The qualitative physical behavior

was obtained both on the shoulder and in the wake. Discrepancies in the shoulder

c signature were traced at least in part to the turbulence modeling. For the

jet off case, the assumption of a solid base rather than an "open nozzle exit"

could account for some of the observed differences. For the jet on case greater

grid resolution is required in the vicinity of the corner.

The calculation of the supersonic turbulent flow over a 2-D back step

with shear layer reattachment on a 200 inclined ramp was also presented and

the results were compared with experimental data. The flow field results

showed qualitative physical behavior while the velocity profiles in the shear

layer and on the inclined ramp compared well with data. The discrepancies

that were observed can be traced again in part to turbulence modeling, grid

resolution and placement of the downstream boundary.

Further evaluation of an appropriate turbulence model for the cases

considered is crucial in obtaining more accurate results. Additional investi-

gation of the effect of grid distribution and resolution is also warranted.
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16.499

________4.092

MS MS MS MS
130.471 136.17 141.970 146.970

Stations and Dimensions in Inches

4.926Yx
0 4.930 5.653 4.624 11.322 3.760

0.230 496 5.899 4.595 11.569 3.707
0.476 4.923 6.146 4.565 11.815 3.653
0.723 4.918 6.392 4.536 12.062 3.592
0.969 4.915 6.639 4.504 12.308 3.530
1.216 4.913 6.885 4.472 12.555 3.464
1.462 4.908 7.132 4.440 12.801 3.397
1.709 4.903 7.378 4.407 13.048 3.326
1.955 4.895 7.625 4.376 13.294 3.252
2.202 4.889 7.871 4.341 13.541 3.173
2.448 4.881 8.118 4.304 13.787 3.089
2.695 4.874 8.364 4.267 14.034 3.002
2.941 4.864 8.611 4.228 14.280 2.914
3.188 4.854 8.857 4.191 14.527 2.820
3.434 4.841 9.104 4.154 14.773 2.726
3.681 4.824 9.350 4.115 15.020 2.626
3.927 4.807 9.597 4.075 15.266 2.524
4.174 4.785 9.843 4.036 15.513 2.419
4.420 4.760 10.090 3.993 15.636 2.366
4.667 4.736 10.336 3.949 15.759 2.315
4.913 4.711 10.583 3.905 16.006 2.214
5.160 4.684 10.879 3.858 16.252 2.125
5.406 4.654 11.076 3.809 16.499 2.046

Figure 7 -Nozzle Boattail Geometry (from Ref. 5).
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CASE 8641. (SETTLES, BACA, WILLIAMS, BOODONOFF, 1980)

TUR-
BULENT FREE SHEAR LAYER COMPRESSION REDEVELOPING S.L

20 30 40 0 50 60
SHEAR LAYER STATION

10 uniits z3.94 cm

Figure 23 -Schematic of Flow Field.

66



CC

17.

67



'5'4

S~ LI

~ 5,.'

CN-

cs;~

C14'

68



Ln,
4w

en.

0

01
0

~0

0

z

69



II

700



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _C
4  

41

0o LL. c" a

>0 00
00 A( 

LIJ> 
O j> 

0

ISI02

o to
UL) C13,4
'.0 0 0

O' 0 a

700 0000 -- 0 1>

0 1

~~ooooo~ooo.oo Go

0 0- -H.

oo W

-4 i

71



1.

0o 0 ut

oo u
00

oL -4

iin

o

0,0
oo 0 0

0~ 0 4

C! oCo

07



REFERENCES

1. Batiuk, G.: A Bibliography of Plume Effects Investigations Conducted by
the Army Missile Command. U.S. Army Missile Command, Technical Report
RD-76-16, 1976.

2. Shrewsbury, G.D.: Effect of Boattail Juncture Shape on Pressure Drag
Coefficients of Isolated Afterbodies. NASA TM X-1517, 1968.

3. Strike, W.T.: Jet Plume Simulation at Mach Number 10. AEDC-TR-70-118, 1970.

4. Alpinieri, L.J. and Adams, R.H.: Flow Separation Due to Jet Pluming.
AIAA Journal, Vol. 4, 1966.

5. Galigher, L.L., Yaros, S.F. and Bauer, R.C.: Evaluation of Boattail
Geometry and Exhaust Plume Temperature Effects on Nozzle Afterbody Drag at
Transonic Mach Numbers, Arnold Engineering Development Center, AEDC-TR-76-102,
Oct. 1976.

6. Burt, J.R.: An Investigation of the Effectiveness of Several Devices in
Simulating a Rocket Plume at Free Stream Mach Numbers of 0.9 to 1.2.
U.S. Army Missile Command, Technical Report RD-TR-71-22, 1971.

7. Crocco, L. and Lees, L.: A Mixing Theory for Interaction Between Dissipative
Flows and Nearly Isentropic Streams. Journal of the Aeronautical Sciences,
Vol. 19, October, 1962.

8. Reeves, B. and Lees, L.: Theory of Laminar Near Wake of Blunt Bodies in
Hypersonic Flow. AIAA Journal, Vol. 3, November, 1965.

9. Baum, E. and Denison, R.: Interacting Supersonic Laminar Wake Calculations
by a Finite Difference Method. AIAA Paper No. 66-45, 1966.

10. Alber, I. and Lees, L.: Integral Theory for Supersonic Turbulent Base Flow.
AIAA Journal, Vol. 6, July, 1968.

11. Shamroth, S.J. and McDonald, H.: A New Solution of the Turbulent Near-Wake
Recompression Problem. The Aeronautical Quarterly, Vol. 23, May 1972.

12. Korst, H.H., Page, R.H. and Childs, M.E.: A Theory for Base Pressure in
Transonic and Supersonic Flow. University of Illinois Engineering Experimental
Station, M. E. TN 392-2, 1955.

13. Chapman, D.R.: An Analysis of Base Pressure at Supersonic Velocities and
Comparison with Experiments. NACA TN 2137, 1950.

14. Page, R.H., Hill, W.G. and Kessler, T.J.: Reattachment of Two-Dimensional
Supersonic Turbulent Flows. ASME Paper 67-FE-20, May 1967.

15. Page, R.H.: A Review of Component Analysis of Base Pressure for Supersonic
Turbulent Flow. Proceedings of the Tenth International Symposium on Space
Technology and Science. Tokyo, 1973.

16. Allen, J.S. and Cheng, S.I.: Numerical Solution of the Compressible

Navier-Stokes Equations for the Laminar Near Wake. Physics of Fluids,
Vol. 19, 1970.

73



17. Roache, P.J. and Mueller, T.J.: Numerical Solutions of Compressible and
Incompressible Separated Flows. AIAA Paper No. 68-747, 1968.

18. Victoria, K.J. and Steger, M.H.: Exact Solutions of the Two-Dimensional
Laminar Near Wake of a Slender Body in Supersonic Flow at High Reynolds
Number. Aerospace Company Report APP-0059 (S9990)-5, 1970.

19. Goodrich, W.D., Lamb, J.P. and Bertin, J.J.: On the Numerical Solution
of Two-Dimensional Laminar Compressible Flows with Imbedded Shock Waves.
ASME Paper No. 72-FE-7, 1972.

20. Ross, B.B. and Cheng, S.I.: The Application of Finite Difference Methods
to the Supersonic Near Wake. AIAA Paper No. 72-115, 1972.

21. Brailovskaya, I.Y.: Flow in the Near Wake. Soviet Physics-Doklady,
Vol. 16, 1971.

22. Mikhail, A.G., Hankey, W.L. and Shang, J.S.: Computation of a Supersonic
Flow Past an Axisymnetric Nozzle Boattail with Jet Exhaust. AIAA Journal,
Vol. 18, No. 8, August, 1980.

23. Rom, J. and Bober, L.J.: Calculation of the Pressure Distribution on
Axisymmetric Boattails Including the Effects of Viscous Interactions and
Exhaust Jets in Subsonic Flow. NASA TM X-3109, 1974.

24. Fong, M.C.: An Analysis of Plume-Induced Boundary Layer Separation.
Journal of Spacecraft, Vol. 8, 1971.

25. Sinha, R., Zakkay, V. and Erdos, J.: Flow Field Analysis of Plumes of
Two-Dimensional Underexpanded Jets by a Time-Dependent Method. AIAA Journal,
Vol. 9, 1971.

26. Grossman, B. and Melnik, R.E.: The Numerical Computation of the Transonic
Flow over Afterbodies Including the Effect of Jet-Plume Viscous Interactions.
AIAA Paper 75-62, 1975.

27. Salas, H.D.: The Numerical Computation of Inviscid Plume Flow Fields.
AIAA Paper 74-523, 1974.

28. Murman, E.M. and Cole, J.D.: Calculation of Plane Steady Transonic Flows.
AIAA Journal, Vol. 9, 1971.

29. Jameson, A.: Iterative Solution of Transonic Flows over Airfoils and Wings,
Including Flows at Mach 1. Communication on Pure and Applied Mathematics,
Vol. 27, 1974.

30. Green, J.E., Weeks, D.J. and Broman, J.W.F.: Prediction of Turbulent Boundary
Layers by a Lag Entrainment Method. RAE Technical Report 72231, 1973.

31. Briley, W.R. and McDonald, H.: Numerical Prediction of Incompressible
Separation Bubbles. Journal of Fluid Mehcanics, Vol. 69, 1975.

32. Briley, W.R. and McDonald, H.: Solution of the Multidimensional Compressible
Navier-Stokes Equations by a Generalized Implicit Method. Journal of
Computational Physics, Vol. 24, 1977.

74



33. Briley, W.R., McDonald, H. and Gibeling, H.J.: Solution of the Multidimensional
Compressible Navier-Stokes Equations by a Generalized Implicit Method. United
Technologies Research Center Report R75-911363-15, January 1976.

34. Gibleing, H.J., McDonald, H. and Briley, W.R.: Development of a Three-
Dimensional Combustor Flow Analysis, Vols. I and II: Theoretical Studies.
Air Force Aeropropulsion Laboratory Report AFAPL-TR-75-59; Vol. I, July 1975;
Vol. II, October 1976.

35. Douglas, J. and Gunn, J.E.: A General Formulation of Alternating Direction
Methods. Numerische Math., Vol. 6, 1964.

36. Favre, A.: Equations des Gay Turbulents Compressibles. J. de Mecanique,
Vol. 4, pp. 361-392, 1965.

37. Bradshaw, P. and Ferriss, D.H.: Calculation of Boundary-Layer Development
Using the Turbulent Energy Equation: Compressible Flow on Adiabatic Walls.
J. Fluid Mechanics, Vol. 46, Part 1, 1971, pp. 83-110.

38. Launder, B.E. and Spalding, D.B.: The Numerical Computation of Turbulent
Flows. Computer Methods in Applied Mechanics and Engineering, Vol. 3, 1974.

39. Gibeling, H.J., Buggeln, R.C. and McDonald, H.: Development of a Two-
Dimensional Implicit Interior Ballistics Code, U.S. Army Armament Research and
Development Command, Ballistic Research Laboratory Report ARBRL-CR-00411,
January 1980.

40. Jones, W.P. and Launder, B.E.: The Prediction of Laminarization with a
Two-Equation Model of Turbulence. Int. J. Heat Mass Transfer, Vol. 15, 1972,
p. 301.

41. Shamroth, S.J. and Gibeling, H.J.: A Compressible Solution of the Navier-
Stokes Equations for Turbulent Flow About an Airfoil, NASA CR-3183, 1979.

42. McDonald, H. and Fish, R.W.: Practical Calculation of Transitional Boundary
Layers. Int. J. Heat and Mass Transfer, Vol. 16, No. 9, 1973, pp. 1729-1744.

43. Shamroth, S.J. and McDonald, H.: Assessment of a Transitional Boundary Layer
Theory at Low Hypersonic Mach Numbers. Int. J. Heat and Mass Transfer,
Vol. 18, 1975, pp. 1277-1284.

44. Kreskovsky, J.P., Shamroth, S.J. and McDonald, H.: Application of a General

Boundary Layer Analysis to Turbulent Boundary Layers Subjected to Strong
Favorable Pressure Gradients. J. Fluid Eng., Vol. 97, June 1975, pp. 217-224.

45. McDonald, H. and Camarata, F.J.: An Extended Mixing Length Approach for Computi
the Turbulent Boundary Layer Development, Proceedings Computation of Turbulent
Boundary Layers - 1968 AFOSR-IFP Stanford Conference, Vol. 1, pp. 83-98, 1969.

46. Van Driest, E.R.: On Turbulent Flow Near a Wall. Journal of the Aeronautical

* Sciences, November 1956.

47. Thames, P.D. and Lombard, C.K.: Geometric Conservation Law and Its Application
to Flow Computations on Moving Grids, AIAA Journal, Vol. 17, No. 10, 1979, p. 10

75



48. Roberts, G.O.: Computational Methods for Boundary Layer Problems. Proceedings
of the 2nd International Conference on Numerical Methods in Fluid Dynamics.
Springer-Verlag, New York, 1971.

49. Roache, P.J.: Computational Fluid Dynamics. Hermosa Publishers, Albuquerque,
1972.

50. Fox, L.: Some Experiments with Singularities in Linear Elliptic Partial
Differential Equations. Proceedings of the Royal Society of London,
Series A, 1971.

51. Fox, L. and Sankar, R.I.: Boundary Singularities in Linear Elliptic
Differential Equations. Journal of the Institute of Applied Mathematics,
Vol. 5, 1969.

52. Ladeveze, J. and Peyret, R.: Calcul Numerique d'une Solution avec Singularite
des Equations de Navier-Stokes: Ecoulement Dans Un Canal Avec Variation
Brusque de Section. Journal de Mechanique, Vol. 13, 1974.

53. Briley, W.R. and McDonald, H.: An Implicit Numerical Method for the Multi-
dimensional Compressible Navier-Stokes Equations. United Aircraft Research
Laboratories Report M911363-6, November 1973.

54. McDonald, H. and Briley, W.R.: Three-Dimensional Flow of a Viscous or
Inviscid Gas. J. Comp. Physics, Vol. 19, No. 2, 1975, p. 150.

55. Weinberg, B.C. and McDonald, H.: Solution of Three-Dimensional Time-Dependent
Viscous Flows, Part 1: Investigation of Candidate Algorithms, SRA Report
R79-90004, Final Contractor's Report (NAS2-10016), 1979.

56. Thomas, P.D. and Lombard, C.K.: Geometric Conservation Law and its Application
to Flow Computations on Moving Grids, AIAA Journal, Vol. 17, No. 10, lQ7Q.

57. Badrinarayanan, M.A.: An Experimental Investigation of Base Flows at
Supersonic Speeds, Journal of the Royal Aeronautical Society, Vol. 65,
pp. 475-482, July 1961.

58. Settles, G.S., Baca, B.K., Williams, D.R. and Bogdonoff, S.M.: A Study of
Reattachment of a Free Shear Layer in Compressible Turbulent Flow, AIAA Paper
80-1408, July 1980.

59. Gibeling, H. and McDonald, H.: Development of a Two-Dimensional Implicit
Interior Ballistics Code, Final Contractor's Report (DAAK11-79-C-0098),
December 1980.

60. Levy, R., Private Communication.

61. Buggeln, R.C., McDonald, H. Levy, R. and Kreskovsky, J.P.: Development of a
Three-Dimensional Supersonic Inlet Flow Analysis, NASA CR 3218, January 1980.

62. Maise, G. and McDonald, H.: Mixing Length and Kinematic Eddy Viscosity in a
Compressible Boundary Layer, AIAA Journal Vol. 6, No. 1, January 1968.

63. Shamroth, S.J., McDonald, H. and Briley, W.R.: A Navier-Stokes Solution for
Transonic Flow Through a Cascade, SRA Report R81-920007-F, Final Contractor's
Report (N00019-79-C-0558), January 1982.

76

J



64. Ames, W.F.: Numerical Methods for Partial Differential Equations. Barnes
& Noble, Inc., New York, New York, 1969.

65. von Rosenberg, D.A.: Methods for the Numerical Solution of Partial Differential
Equations. American Elsevier Publishing Co., Inc., New York, New York, 1969.

66. Douglas, J. and Jones, B.F.: On Predictor-Corrector Methods for Nonlinear
Parabolic Differential Equations. Soc. for Indust. Appl. Math., Vol. 11,
1963, pp. 195-204.

67. Gourlay, A.R. and Morris, J.L.: Finite-Difference Methods for Nonlinear
Hyperbolic Systems. Math. Comp., Vol. 22, 1968, pp. 28-39.

68. Richtmyer, R.D. and Morton, K.W.: Difference Methods for Initial Value
Problems. Second Edition. Interscience Publishers, New York, New York,
1967.

69. Chorin, A.J.: Numerical Study of Thermal Convection in a Fluid Layer Heated
from Below. AEC R&D Report TID-4500 (also New York Univ. Rpt. NYO-1480-61), 1966.

70. Bellman, R.E. and Kalaba, R.E.: Quasilinearization and Nonlinear Boundary-
Value Problems. American Elsevier Publ. Co., Inc., New York, 1965.

71. Peacemen, D.W. and Rachford, H.H.: The Numerical Solution of Parabolic
and Elliptic Differential Equations. Soc. for Indust. Appl. Math., Vol. 3,
1955, pp. 28-41.

72. Douglas, J.: On the Numerical Integration of Uxx + uTy = ut by Implicit
Methods. Soc. for Indust. Appl. Math., Vol. 3, 1955, pp. 42-65.

73. Mitchell, A.R.: Computational Methods in Partial Differential Equations,
Wiley, New York, 1969.

74. Yananko, N.N.: The Method of Fractional Steps, Translation Edited by
M. Holt. Springer-Verlag, New York, New York, 1971.

77



APPENDIX A

The governing conservation equations in cylindrical-polar coordinates are

transformed using the Jacobian transformation,

(A-i)

T t

where (r, 0, z).=r~ The resulting equations may be written in the

(A-2)

.C Y (JYJ ial)] + j6+ R~

where

Y ay'
at

j ayi (A-3)

Further, the coefficients Si. Yip Ci are given by

1 _Y (A-4)

rm r

and a -1 for all equations except the x 2-direction momentum equations for which

u2.
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The vector variables used in Eq. (A-2) are defined as

pUl] pU1 Ui

PU2  P U2 Ui

S PU n pU3Ui
p1 rP PUi

ph phUi

pk pkU i

(A-5) (A-6)

where n 1 for i -1 and n 0 for i 2, 3.

r Tll T i ,
r2 TI
r Ti

*12 T1
r T,3 Tj3-G = -Gi for i=2,3

- rq , q

/IT k kT k ,

(A-7) (A-8)

Note that the velocity components (UI, U2, U3) are the cylindrical-polar velocity

components written in cylindrical-polar coordinates. The molecular and turbulent

stress tensors, Eqs. (6) and (8), may be written as

ij = 2ef f  /Lff(VU) +  V - - Pk)i (A-9)

and the rate of strain tensor components in cylindrical-polar coordinates are
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au

I Up + UEl

D11 --

r2  ax2  r

D aU 3  (A-10)

D I2~[ o ( ) + ou

- I [ (U3  !u1 L

D23  +-- [  +]

2 a3[ I r r 612

and

a(rUI) + I 8U2 + (-)
r 7E, r OR2  8 3

The derivatives required in Eqs. (A-1O and A-li) must be expressed in terms of the
i

computational coordinates y using the chain rule, Eq. (34).

Finally, the vector I contains source terms and certain differential terms

which do not conform to the basic structure of Eq. (A-2), and the vector t contains

the additional curvature terms due to the cylindrical-polar coordinate system.

0 (A-12)

0

0

S: 0

P Dp---- +  + -P t

[P) ij _ (V.U)?] -zjpk V..i -.pe} + Sk
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(A-13)

SpU2  r T2 2

~FpUIU2

0

0

0

0
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APPENDIX B

Linearization Technique

A number of techniques have been used for implicit solution of the following

first-order nonlinear scalar equation in one dependent variable O(x,t):

Special cases of Eq. (B]) include the conservation form if F(0) = 1, and quasi-

linear flow if G(0) f 4. Previous implicit methods for Eq. (Bl) which employ

nonlinear difference equations and also methods based on two-step predictor-

corrector schemes are discussed by Ames (Ref. 64, p. 82) and von Rosenburg

(Ref. 65), p. 56). One such method is to difference nonlinear terms directly

at the implicit time level to obtain nonlinear implicit difference equations;

these are then solved iteratively by a procedure such as Newton's method.

Although otherwise attractive, there may be difficulty with convergence in the

iterative solution of the nonlinear difference equations, and some efficiency

is sacrificed by the need for iteration. An implicit predictor-corrector

technique has been devised by Douglas and Jones (Ref. 66) which is applicable

to the quasilinear case (G = 4) of Eq. (Bl). The first step of their procedure

is to linearize the equation by evaluating the non-linear coefficient 
as F(O n)

and to predict values of *n+1/2 using either the backward difference or the

Crank-Nicolson scheme. Values for n+l are then computed in a similar manner

using F( n + 1/2 ) and the Crank-Nicolson scheme. Gourlay and Morris (Ref. 67)

have also proposed implicit predictor-corrector techniques which can be applied

to Eq. (Al). In the conservative case (F=1), their technique is to define
G(0) by the relation G(O) , OG(0) when such a definition exists, and to evaluate

( n+l ) using the values for 4n+l computed by an explicit predictor scheme.

With G thereby known at the implicit time level, the equation can be treated as

linear and corrected values of 0n+l are computed by the Crank-Nicolson scheme.

A technique is described here for deriving linear implicit difference

approximations for nonlinear differential equations. The technique is based

on an expansion of nonlinear implicit terms about the solution at the known time
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level, tn, and leads t3 a one-step, two-level scheme which, being linear in

unknown (implicit) quantities, can be solved efficiently without iteration.

This idea was applied by Richtmyer and Morton (Ref. 68, p. 203) to a scalar

nonlinear diffusion equation. Here, the technique is developed for problems

governed by £ nonlinear equations in £ dependent variables which are

functions of time and space coordinates. Although the present effort concen-

trates upon two spatial dimensions and time, the technique will be described

for the three-dimensional, unsteady equations.

The solution domain is discretized by grid points having equal spacings1 31 2 3in the computational coordinates, Ay1 , A2 and Ay3 in the yl, y and y

directions, respectively, and an arbitrary time step, At. The subscripts

i, j, k and superscript n are grid point indices associated with y , y , y

deoe 1 2 3 nand t, respectively, and thus n do iY ) It isI ,j,k deoe (it YJ9 Yk" tn ) "  ti

assumed that the solution is known at the n level, tn , and is desired at
n+lthe (n+l) level, t . At the risk of an occasional ambiguity, one or more

of the subscripts is frequently omitted, so that * n is equivalent to i n

Although present attention is focused on the compressible Navier-Stokes

equations, the numerical method employed is quite general and is formally

derived for systems of governing equations which have the following form:

8M(#t = 2(4) +S(#) (B2)

where 0 is a column vectur containing X dependent variables, H and S are

column vector functions of 0, and 2 is a column vector whose elements are

spatial differential operators which may be multidimensional. The generality

of Eq. (B2) allows the method to be developed concisely and permits various

extensions and modifications (e.g., noncartesian coordinate systems, turbulence
models) to be made more or less routinely. It should be emphasized, however,

that the Jacobian WH/ must usually be nonsingular if the ADI techniques as

applied to Eq. (B2) are to be valid. A necessary condition is that each

dependent variable appear in one or more of the governing equations as a time

de-i'ative. An exception would occur if for instance, a variable having no time
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derivative also appeared in only one equation, so that this equation could be

decoupled from the remaining equations and solved a posteriori by an alternate

method. As a consequence, the present method is not directly applicable to the

incompressible Navier-Stokes equations except in one-dimension, where ADI

techniques are unnecessary. For example, the velocity-pressure form of the

incompressible equations has no time derivative of pressure, whereas the

vorticity-stream-function form has no time derivative of stream function. For

computing steady solutions, however, the addition of suitable "artificial" time

derivatives to the incompressible equations, as was done in Chorin's (Ref. 69)

artificial compressibility method, would permit the application of the present

method. Alternatively, a low Mach number solution of the compressible equations

can be computed.

The linearized difference approximation is derived from the following

implicit time-difference replacement of Eq. (B2):

(H ,H) /A[ ( n+I)+Sn+]+(1 3)[ 1 )+Sn (B3)

where, for example, Hn+l H( n+l The form of 2 and the spatial differencing

are as yet unspecified. A parameter a(0 < 6 < 1) has been introduced so as to

permit a variable centering of the scheme in time. Equation (B3) produces a

backward difference formulation for 8 1 and a Crank-Nicolson formulation for

8 = 1/2.

The linearization is perfr-med by a two-step process of expansion about thenl
known time level tn and subsequent approximation of the quantity (,,/at)n t,

which arises from chain rule-dlfferentiation, by ($n+ln). The result is

Hn+l= Hn +(aH 1,)n (#+_#n) + oltl2 (B4a)

S n+l= Sn+ ((S/O)n ( n +1l_,On) +O0 At)2 (B4b)
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The matrices aH/ao and aS/2 are standard Jacobians whose elements are

defined, for example, by (3H/ao) aHq /aOr . The operator elements of the

qr q r
matrix /2a are similarly ordered, i.e., (a.2/ )r a /q  ; however, the

intended meaning of the operator elements requires some clarification. For the

q throw, the operation n) is understood to mean that

is computed and that all occurrences of (4 /at)nq r
arising from chain rule differentiation are replaced by (. _ n)/At.

After linearization as in Eqs. (B4), Eq. (A3) becomes the following linear

implicit time-differenced scheme:

(on-) /At :..(#n) +s n + /3 (d.2 /ao + dsn/ao)(on+l-o n )  (B5)

Although Hn+ l is linearized to second order in Eq. (B4), the division by At in

Eq. (B3) introduces an error term of order At. A technique for maintaining

formal second-order accuracy in the presence of nonlinear time derivatives is

discussed by McDonald and Briley (Ref. 32), however, a three-level scheme

results. Second-order temporal accuracy can also be obtained (for 8 = 1/2) by

a change in dependent variable to 0 = H(O), provided this is convenient, since

the nonlinear time derivative is then eliminated. The temporal accuracy is

independent of the spatial accuracy.

On examination, it can be seen that Eq. (B5) is linear in the quantity

0 n+l _ n) and that all other quantities are either known or evaluated at the

n level. Computationally, it is convenient to solve Eq. (B5) for ( n+1 n

rather than n . This both simplifies Eq. (B5) and reduces roundoff errors,

since it is presumably better to compute a small O(At) change in an 0(l)

quantity than the quantity itself. To simplify the notation, a new dependent

variable , defined by

(R6)
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nIn+l n4- nis introduced, and thus n, = n _ , and 1 n 0. It is also convenient

to rewrite Eq. (A5) in the following simplified form:

(A+ At-,)* n + l = t [. (6n)+sn] (B7a)

where the following symbols have been introduced to simplify the notation:

AE a= Hn/a  -jf3t(dsn/a) (B.7b)

It is noted that I( ) is a linear transformation and thus P(O) 0. Further-

more, if 2(t) is linear, then =

Spatial differencing of Eq. (B7a) is accomplished simply by replacing

derivative operators such as a/yi, D2/3yI ay by corresponding finite differ-

ence operators, Di, D2. Henceforth, it is assumed that . and . have been
discretized in this manner, unless otherwise noted.

Before proceeding, some general observations seem appropriate. The fore-

going linearization technique assumes only Taylor expandability, an assumption

already implicit in the use of a finite difference method. The governing

equations and boundary conditions are addressed directly as a system of coupled

nonlinear equations which collectively determine the solution. The approach

thus seems more natural than that of making ad hoc linearization and decoupling

approximations, as is often done in applying implicit schemes to coupled and/or

nonlinear partial differential equations. With the present approach, it is not

necessary to associate each governing equation and boundary condition with a

particular dependent variable and then to identify various "nonlinear

coefficients" and "coupling terms" which must then be treated by lagging,
predictor-corrector techniques, or iteration. The Taylor expansion procedure

is analogous to that used in the generalized Newton-Raphson or quasi-linearization
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methods for iterative solution of nonlinear systems by expansion about a known

current guess at the solution (e.g., Bellman & Kalaba, Ref. 70). However, the

concept of expanding about the previous time level apparently had not been

employed to produce a noniterative implicit time-dependent scheme for coupled

equations, wherein nonlinear terms are approximated to a level of accnracy

commensurate with that of the time differencing. The linearization technique

also permits the implicit treatment of coupled nonlinear boundary conditions,

such as stagnation pressure and enthalpy at subsonic inlet boundaries, and in

practice, this latter feature was found to be crucial to the stability of the

overall method (Ref. 32).

Application of Alternating-Direction Techniques

Solution of Eq. (B7a) is accomplished by application of an alternating-

direction implicit (ADI) technique for parabolic-hyperbolic equations. The

original ADI method was introduced by Peaceman and Rachford (Ref. 71) and

Douglas (Ref. 72); however, the alternating-direction concept has since been

expanded and generalized. A discussion of various alternating-direction

techniques is given by Mitchell (Ref. 73) and Yanenko (Ref.74).

The present technique is simply an application of the very general

procedure developed by Douglas and Gunn (Ref. 35) for generating ADI schemes

as perturbations of fundamental implicit difference schemes such as the

backward-difference or Crank-Nicolson schemes.

For the present, it will be assumed that 2(o) contains derivatives of
1 2 3first and second order with respect to y , y and y , but no mixed derivatives.

In this case, 1 can be split into three operators, - 29,3 associated
1 2 3with the y , y and y coordinates and each having the functional form
ai a ( 2 /ay i i ). Equation (A7a) then becomes

Recalling that 2(An) 0 0, the Douglas-Gunn representation of Eq. (B8) can be

written as the following three-step solution procedure:

87



(A+At-y, )4,*=At[( cb I +' 2z + "b3 ) o n + S n]  (Bga)

(A+ (AI + At2 (29A*

*(A+At -1 2 )V**=A* (B.9b)

(A+ft 1-3)4 n +L =A **
(R9c)

where J and j are intermediate solutions. It will be shown subsequently

that each of Eqs. (B9) can be written in narrow block-banded matrix form and

solved by efficient block-elimination methods. If b and @ are eliminated,

Eqs. (B9) become

(A +Wt, )A-'(A +At !)A-' (A+ At 1.3 A + at [(b I + "'b2 + Lb 3)  +n 0

If the multiplication on the left-hand side of Eq. (BIO) is performed, it becomes

apparent that Eq. (B0) approximates Eq. (B8) to order (At) . Although the

stability of Eqs. (B9) has not been established in circumstances sufficiently

general to encompass the Navier-Stokes equations, it is often suggested (e.g.,

Richtmyer & Morton, Ref. 68, p. 215) that the scheme is stable and accurate under

conditions more general than those for which rigorous proofs are available.

This latter notion was adopted here as a working hypothesis supported by favor-

able results obtained in actual computations (e.g., Refs. 33 and 34).

A major attraction of the Douglas-Gunn scheme is that the intermediate
* ** n+1solutions p and I are consistent approximations to nl. Furthermore,

n * n+l
for steady solutions, * = * = 4* = 1P independent of At. Thus, physical

boundary conditions for 'rP+ can be used in the intermediate steps without a

serious loss in accuracy and with no loss for steady solutions. In this respect,

the Douglas-Gunn scheme appears to have an advantage over locally one-dimensional

(LOD) or "splitting" schemes, and other schemes whose intermediate steps do not

steps complicates the treatment of boundary conditions and, according to Yanenko
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(Ref. 74, p. 33), does not permit the use of asymptotically large time steps.

It is not clear that this advantage of the Douglas-Gunn scheme would always

outweigh other benefits which might be derived from an alternative scheme.

However, since the ADI scheme can be viewed as an approximate technique for

solving the fundamental difference scheme,-Eq. (Ba), alternate techniques can

readily be used within the present formulation.

It is worth noting that the operator 1 can be split into any number of

components which need not be associated with a particular coordinate direction.

As pointed out by Douglas and Gunn (Ref. 41), the criterion for -identifying

sub-operators is that the associated matrices be "easily solved" (i.e., narrow-

banded). Thus, mixed derivatives can be treated implicitly within the ADI

framework, although this would increase the number of intermediate steps and

thereby complicate the solution procedure. Finally, only minor changes are

introduced if, in the foregoing development of the numerical method, H,2, and

S are functions of the spatial coordinates and time, as well as *.
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